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Though it has been long presumed that peripheral populations tend to exhibit low levels of ge-
netic diversity due to isolation and genetic drift, results of empirical investigation remain am-
biguous. Some rusty-necklaced partridge (Alectoris magna) populations have expanded their
present ranges, resulting in several peripheral populations, due to recent deforestation by hu-
man beings in Northwestern China. On the basis of mitochondrial DNA control-region and
microsatellite DNA data, we compare the genetic diversity (π-, H-, H0-, and HE-values) be-
tween three peripheral populations and five central populations. Maternal and biparental DNA
markers indicated accordantly genetic diversity. Compared to central populations, the periph-
eral populations exhibited lower genetic diversity. The low genetic variability of the three pe-
ripheral populations appeared to result partly from isolation and natural selection.

Key words: Alectoris magna, peripheral population, genetic diversity, mitochondrial DNA,
microsatellite

INTRODUCTION

Geographically peripheral populations are more likely to be imperiled than
central populations. They tend to occur in less suitable environments and are often
isolated from more central and continuous populations (LESICA & ALLENDORF
1995). Many theoretical works have revealed that genetic mechanisms such as in-
breeding or genetic drift in small population caused by genetic bottlenecks and
founder effects are important factors in reducing genetic variability (BARRETT &
KOHN 1991). Genetic diversity is expected to be lower in peripheral populations
than in central populations (CASSEL & TAMMARU 2003, ECKERT et al. 2008), due
to genetic drift (NEI et al. 1975, HARTL & CARK 1997). Central populations are
usually large, continuous and occupy favorable habitats. Peripheral populations,
by contrast, can be more or less isolated, fragmented, and be subject to a more vari-
able physical environment (LESICA & ALLENDORF 1995). Accordingly, peripheral
populations will often experience different selection pressures than central popula-
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tions, which may lead to lower genetic divergence (KIRPATRICK & BARTON 1997).
Genetic differences are most likely to occur in populations that become isolated at
the periphery of the range (LESICA & ALLENDORF 1995, SAFRIEL et al. 1994). Em-
pirical evidence supporting this hypothesis remains ambiguous (GARNER et al.
2004, HUANG et al. 2005). Some data support the hypothesis that peripheral popu-
lations exhibit lower genetic diversity (LAMMI et al. 1999, HOU et al. 2002, WANG
et al. 2001), while others show no such relationship (TIGERSTEDT 1973, WENDEL
& PARKS 1985, PETITET et al. 1998). There is thus practical need for descriptive
studies.

Rusty-necklaced partridge (Alectoris magna, Gallifromes, Phasianidae) is
found in Qinghai, Ningxia and Gansu provinces, patchily distributed in dry and
open rocky mountains (LIU 1992), with two described subspecies: A. magna magna
(the Chaidamu Basin) and A. magna lanzhouensis (the Lanzhou Basin and the Liu-
panshan Mountain) (LIU et al. 2004). The partridge is representative species of arid
and semiarid environments in northwestern China (HUANG et al. 2007a). Forest
and farmland are generally avoided. Most forest has disappeared in the Gansu
Province because of deforestation and cultivation by human beings. Rusty-neck-
laced partridge has expanded to Lixian, Beidao and Haiyuan, which result in pe-
ripheral populations, paralleling with A. chukar along the Liupan Mountains (Fig.
1). Introgressive hybridization between the two species was detected in the contact
zone (CHEN et al. 1999, LIU et al. 2006). These populations provided the opportu-
nity to investigate the genetic diversity of peripheral populations, compared to that
of central populations.

Mitochondrial DNA (mtDNA), particularly focusing on fast-evolving seg-
ments of the noncoding control region, has been extensively employed to assess
evolutionary questions (STANLEY et al. 1996, BONATTO & SALZANO 1997, VILA
et al. 1997). Recently, the development of hypervariable genomic markers, micro-
satellites (GOLDSTEIN & SCHLOTTERER 1999) allowed the inferring of additional
details on evolutionary processes and population structure (BALDING et al 2001).
Here we examine the difference of genetic diversity in relation to geographic posi-
tion (peripheral or central), using both mtDNA control-region sequences and nu-
clear microsatellites. To eliminate the effects of genetic variation between subspe-
cies, we only analyze one subspecies, A. magna lanzhouensis. There were two
aims: (1) assess whether maternal mtDNA and biparental microsatellite markers
described concordant population genetic diversity; and (2) compare the genetic di-
versity between peripheral and central populations.
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MATERIALS AND METHODS

Sample collection and laboratory methods

A total of 82 samples of eight populations in rusty-necklaced partridge are collected from the
following localities: Lanzhou, Dingxi, Jingyuan, Haiyuan, Huining, Beidao, Lixian and Wushan
(Fig. 1). Wild samples were collected during consecutive hunting seasons. Liver samples were dis-
sected from birds and stored in 95% ethanol immediately after removal. The methods of DNA extrac-
tion, PCR amplification and sequence of mtDNA control region genes referred to HUANG et al
(2007a). The sequences were deposited in GenBank and the accession numbers are from DQ157593
to DQ157619. These are just from HUANG et al (2007a).

All samples were genotyped by PCR amplifications of eight microsatellites: MCW135
(5’-ATA TGC TGC AGA GGG CAG TA–3’, 5’-CAT GTT CTG CAT TAT TGC TCC–3’, anneal-
ing temperature = 45 °C), MCW207 (5’-GAT CCT TAC AGC CTG CAA TGC–3’, 5’-ATA CTG
TTG GAA GAT GTA TGC G–3’, 60 °C), MCW295 (5’-ATC ACT ACA GAA CAC CCC TCT
C–3’, 5’-TAT GTA TGC ACG CAG ATA TC–3’, 50 °C), MCW323 (5’-GAA ATG GTA CAG
TGC AGT TGG–3’, 5’-TGA ATT CTC TCG GCT TCC ATC–3’, 60 °C), that were isolated origi-
nally from the chicken (Gallus gallus), and AB121114 (5’-GAC TAG TAG TGA AGA CTG TT–3’,
5’-AGA TTT CTG GCT TCT GCA–3’, 52 °C), AB063167 (5’-GTC ACA CAC TGT ATC ATA
CT–3’, 5’-GTG ATC TCA GTG TTT ATC TT–3’, 55 °C), AB035840 (5’-TGC ACC AAT CCC
AGC TGT TT–3’, 5’-ACA ATG GAA AGT GGG GTT C–3’, 55 °C), AB063153 (5’-CAT AAC
TGG GAT ATT GTT TA–3’, 5’-ACA ACC ACT TCT CCA GCT A–3’, 52 °C) that from common quail
(Coturnix coturnix), which were obtained from GenBank. The PCR products were denatured at 94 °C
5 min using Dextran blue formamide solution. After polyacrylamide gel electrophoresis, the migra-
tion rate fragment size was determined using Bandscan 4.30 software (http//moleco.sjtu.edu.cn),
with the marker pUC19 DNA/Msp I (Hpa II).
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Fig. 1. Rusty-necklaced partridge sampling sites: 1 = Lanzhou, 2 = Jingyuan, 3 = Haiyuan, 4 = Dingxi,
5 = Huining, 6 = Wushan, 7 = Beidao, 8 = Lixian



Sequence analysis

All sequences were aligned using Clustal X (THOMPSON et al. 1997). Arlequin2.0 (SCHNEIDER

et al. 2002) was used to compute the number of haplotypes in populations, number of polymorphic
sites. DnaSP4.0 (ROZAS et al. 2003) was used to calculate population haplotype diversity (H), nucle-
otide diversity (π) and mean number of pairwise differences (K). Arlequin2.0 (SCHNEIDER et al.
2002) was used to compute pairwise population differentiation and to perform analysis of molecular
variance (AMOVA, EXCOFFIER et al. 1992).

The software GENEPOP Version 3.2a (ftp://ftp.cefe.cnrs-mop-fr/pub/msdos/genepop) (RAY-

MOND & ROUSSET 1995) was used to calculate allele frequencies, observed (HO) and expected (HE)
heterozygosities. Deviations from Hardy–Weinberg equilibrium for each locus and each population
were assessed using the Markov chain method, as implemented in GENEPOP 3.2a. Genetic differen-
tiations were tested among all pairs of populations for all loci (GENEPOP 3.2a). FST values for popu-
lation subdivision were also calculated using GENEPOP 3.2a according to WEIR and COCKERHAM

(1984). Tests of genotypic differentiation, based on the G-based exact tests of GOUDET et al (1996),
were also performed using this program.

RESULTS

Mitochondrial DNA haplotype and variability

A total of 458 nucleotides of the mtDNA control region were sequenced of
all the samples. The mtDNA control-region sequence alignment showed 25 differ-
ent haplotypes, defined by 27 polymorphic sites (Table 1). The number of ob-
served haplotypes within populations ranged from three in Beidao to seven in
Lanzhou (Table 2). The percentages of unique haplotypes were calculated by di-
viding the number of unique haplotypes by the total number of samples. Within
each population, this percentage varied from 17.64% in Lanzhou to 37.50% in
Wushan (Table 2). The most common haplotypes were M2 with 29 individuals
from all the sampling sites (Table 1). Many allied haplotypes, however, were local-
ized. Results of AMOVA showed that 12.25% of the total mtDNA genetic vari-
ability was distributed within, and 87.75% among populations (ΦST = 0.63,
P<0.01). Pairwise FST values test showed peripheral populations were significantly
differentiated from central populations except Haiyuan and Huining (Table 3).

Nucleotide diversity among the eight populations varied from 0.0028 (Hai-
yuan) to 0.0069 (Dingxi, Table 2); and haplotype diversity ranged from 0.52 (Bei-
dao) to 0.86 (Wushan, Table 2). The pairwise divergence between haplotypes (av-
erage k = 2.33) was lowest (k = 0.85) in partridges from Haiyuan population and
highest (k = 3.18) in partridges from Dingxi population. Three peripheral popula-
tions (Lixian, Beidao and Haiyuan), possessed lower haplotype diversity (average
0.67) and nucleotide diversity (average 0.0030), compared to central geographic
populations (average H = 0.80, π = 0.0057).
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Microsatellites genetic diversity

The results of our PCR amplifications of
the eight microsatellite loci in 82 rusty-neck-
laced partridge samples revealed a total of 54
alleles. The eight microsatellites were poly-
morphic in the partridge samples, with the ex-
ception of locus MCW207, which was mono-
morphic in the all samples. Allele frequencies at
microsatellites were calculated for all individu-
als. Values of observed heterozygosity (HO)
ranged from 0.20 (Lixian) to 0.75 (Jingyuan),
and values of expected heterozygosity (HE)
varied from 0.31 (Lixian) to 0.59 (Wushan)
(Table 2). The averages of the eight geographic
populations of rusty-necklaced partridge are
0.45 for HO and He. Significant allele frequency
differences were detected among all pairwise
comparisons for the eight ps over all loci (P <
0.001). Probability tests for departure from
Hardy–Weinberg performed in each popula-
tion and cross each locus show that five loci
(AB063153, MCW295, CW323, AB121114,
AB035840) in each population were in equilib-
rium P > 0.05), and the MCW135 locus in the
Lanzhou and Beidao populations was not equi-
librium (P < 0.05). The multilocus test per-
formed for Beidao population showed a hetero-
zygote deficit, but the difference was not sig-
nificant (P > 0.05). Other populations showed
heterozygote redundancy, which was signifi-
cant in populations Haiyuan and Jingyuan
(P<0.05). Microsatellite genetic diversity was
also significantly partitioned among the eight
population (average multilocus FST = 0.309, P <
0.01). Pairwise FST values were significant be-
tween peripheral and central populations ex-
cept Lixian and Wushan (Table 3).

Compared to central geographic popula-
tions, Lixian, Beidao and Haiyuan exhibited
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low HO (average 0.25) and HE (average 0.34). A significant difference was found
in HO (t = 2.2443, p = 0.044) and in HE (t = 4.15, P = 0.007) between peripheral and
the central populations. Lixian population has the lowest observed heterozygosity
(HO = 0.20) and the lowest expected heterozygosity (HE = 0.31), significantly dif-
ferent from heterozygosity values of all the other populations (P < 0.05; Wil-
coxon’s signed-rank test).

DISCUSSION

Though the mtDNA genome of animals is typically inherited in a uniparental
(matrilineal) fashion and only has an effective population size one-fourth that of
the nuclear genome (AVISE et al. 1987), the genetic diversities exhibited by
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Table 3. Pairwise values of FST ( microsatellites DNA, above the diagonal; mitochondrial DNA, be-
low the diagonal) among populations of rusty-necklaced partridges.

Population Huining Beidao Haiyuan Jingyuan Lanzhou Dingxi Wushan Lixian

Huining 0.396* 0.264* 0.358* 0.281* 0.367* 0.198* 0.413**

Beidao 0.654** 0.194* 0.264* 0.287* 0.771** 0.180* 0.273*

Haiyuan 0.031 0.640** 0.147* 0.337* 0.284* 0.110* 0.373*

Jingyuan 0.150* 0.545** 0.082 0.392* 0.324* 0.103* 0.392*

Lanzhou 0.126* 0.504** 0.102* 0.041 0.343* 0.302* 0.485**

Dingxi 0.176* 0.629** 0.249* 0.081 0.138* 0.254* 0.464**

Wushan 0.245* 0.310* 0.192* 0.154* 0.080 0.299* 0.088

Lixian 0.294* 0.499** 0.285* 0.205* 0.146* 0.347* 0.127*

*P < 0.05, **P < 0.01

Table 2. Haplotypes and genetic diversity of the eight populations.

Population Sample
size

Total
haplotypes

Unique
haplotypes

K* π* H* HO HE

Huining 9 5 2 2.17 0.0047 0.73 0.57 0.55

Wushan 8 5 3 3.14 0.0057 0.86 0.50 0.58

Jingyuan 10 4 2 2.47 0.0054 0.78 0.75 0.46

Lanzhou 17 7 3 2.60 0.0057 0.85 0.52 0.59

Dingxi 10 5 2 3.18 0.0069 0.76 0.48 0.41

Beidao 7 3 2 1.81 0.0039 0.52 0.22 0.32

Lixian 8 4 2 1.03 0.0023 0.78 0.34 0.38

Haiyuan 13 6 3 0.85 0.0028 0.72 0.20 0.31

*From HUANG et al 2007a.



mtDNA haplotypes and observed at microsatellites loci were accordant. The three
peripheral populations, Lixian, Beidao and Haiyuan possessed lower nucleotide
diversity (average π = 0.0030), haplotype diversity (average H = 0.67), and values
of observed heterozygosity (average HO = 0.25) and expected heterozygosity (av-
erage HE = 0.34), while central populations owned higher genetic diversity (aver-
age π = 0.0057, H = 0.80, HE = 0.52, HO = 0.58).

Many authors believe that the peripheral populations often have reduced lev-
els of genetic variability relative to central populations (LESICA & ALLERDORF
1995, GARCIA-RAMOS & KIRKPATRICK 1997, WANG et al. 2001). Our results sup-
port this hypothesis, since compared to central populations, the three peripheral
populations exhibited lower genetic diversity. Populations located at range mar-
gins are more isolated from sources of immigrants and are thus more prone to ge-
netic bottlenecks (KARRON 1987, ROWE & BEEBEE 2003), a situation that should
deplete neutral genetic variation (GARNER et al. 2004). The genetic diversity of a
population is related to the degree of isolation. Low levels of genetic diversity can
be expected in populations at range limits as a result of low levels of immigration
and high levels of genetic drift (e.g. SOULÉ 1973, HOFFMANN & BLOWS 1994).
Rusty-necklaced partridge is a species indicative of arid and semiarid environ-
ments in northwestern China, while forest and farmland are generally avoided.
This could explain the lower genetic diversity of the Haiyuan population, because
it is isolated from other populations by farmlands, preventing gene flow. HUANG et
al. (2007b) observed that the population genetic diversity of rusty-necklaced partrid-
ge was negatively correlated with the rainfall. Based on this environmental factor,
natural selection could lead to a lower genetic diversity. Indeed, the Lixian and Bei-
dao populations belong to wet areas with average annual rainfall of 510.0±126.2
mm (n = 40) and 547.8±130.5 mm (n = 40), a habitat little favorable for rusty-
necklaced partridges, and possessed the lowest genetic diversities (Table 2).
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